skip to main content


Search for: All records

Creators/Authors contains: "Carter, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The use of transmission electron microscopy (TEM) to observe real-time structural and compositional changes has proven to be a valuable tool for understanding the dynamic behavior of nanomaterials. However, identifying the nanoparticles of interest typically require an obvious change in position, size, or structure, as compositional changes may not be noticeable during the experiment. Oxidation or reduction can often result in subtle volume changes only, so elucidating mechanisms in real-time requires atomic-scale resolution orin-situelectron energy loss spectroscopy, which may not be widely accessible. Here, by monitoring the evolution of diffraction contrast, we can observe both structural and compositional changes in iron oxide nanoparticles, specifically the oxidation from a wüstite-magnetite (FeO@Fe3O4) coreshell nanoparticle to single crystalline magnetite, Fe3O4nanoparticle. Thein-situTEM images reveal a distinctive light and dark contrast known as the ‘Ashby-Brown contrast’, which is a result of coherent strain across the coreshell interface. As the nanoparticles fully oxidize to Fe3O4, the diffraction contrast evolves and then disappears completely, which is then confirmed by modeling and simulation of TEM images. This represents a new, simplified approach to tracking the oxidation or reduction mechanisms of nanoparticles usingin-situTEM experiments.

     
    more » « less
  2. Abstract

    Transition metal dichalcogenides (TMDs) are a class of 2D materials demonstrating promising properties, such as high capacities and cycling stabilities, making them strong candidates to replace graphitic anodes in lithium-ion batteries. However, certain TMDs, for instance, MoS2, undergo a phase transformation from 2H to 1T during intercalation that can affect the mobility of the intercalating ions, the anode voltage, and the reversible capacity. In contrast, select TMDs, for instance, NbS2and VS2, resist this type of phase transformation during Li-ion intercalation. This manuscript uses density functional theory simulations to investigate the phase transformation of TMD heterostructures during Li-, Na-, and K-ion intercalation. The simulations suggest that while stacking MoS2layers with NbS2layers is unable to limit this 2H → 1T transformation in MoS2during Li-ion intercalation, the interfaces effectively stabilize the 2H phase of MoS2during Na- and K-ion intercalation. However, stacking MoS2layers with VS2is able to suppress the 2H → 1T transformation of MoS2during the intercalation of Li, Na, and K-ions. The creation of TMD heterostructures by stacking MoS2with layers of non-transforming TMDs also renders theoretical capacities and electrical conductivities that are higher than that of bulk MoS2.

     
    more » « less
  3. Polythiophenes (PTs) constitute a diverse array of promising materials for conducting polymer applications. However, many of the synthetic methods to produce PTs have been optimized only for the prototypical alkyl-substituted example poly(3-hexylthiophene) (P3HT). Improvement of these methods beyond P3HT is key to enabling the widespread application of PTs. In this work, P3HT and two ether-substituted PTs poly(2-dodecyl-2H,3H-thieno[3,4-b][1,4]dioxine) (PEDOT-C12) and poly(3,4-bis(hexyloxy)thiophene) (PBHOT) are synthesized by the FeCl3-initiated oxidative method under different conditions. Polymerization was carried out according to a common literature procedure (“reverse addition”) and a modified method (“standard addition”), which differ by the solvent system and the order of addition of reagents to the reaction mixture. Gel-permeation chromatography (GPC) was performed to determine the impact of the different methods on the molecular weights (Mw) and degree of polymerization (Xw) of the polymers relative to polystyrene standards. The standard addition method produced ether-substituted PTs with higher Mw and Xw than those produced using the reverse addition method for sterically unhindered monomers. For P3HT, the highest Mw and Xw were obtained using the reverse addition method. The results show the oxidation potential of the monomer and solution has the greatest impact on the yield and Xw obtained and should be carefully considered when optimizing the reaction conditions for different monomers. 
    more » « less
  4. null (Ed.)
    Investigating the earliest stages of crystallization requires the transmission electron microscope (TEM) and is particularly challenging for materials which can be affected by the electron beam. Typically, when imaging at magnifications high enough to observe local crystallinity, the electron beam's current density must be high to produce adequate image contrast. Yet, minimizing the electron dose is necessary to reduce the changes caused by the beam. With the advent of a sensitive, high-speed, direct-detection camera for a TEM that is corrected for spherical aberration, it is possible to probe the early stages of crystallization at the atomic scale. High-quality images with low contrast can now be analyzed using new computing methods. In the present paper, this approach is illustrated for crystallization in a Ge 2 Sb 2 Te 5 (GST-225) phase-change material which can undergo particularly rapid phase transformations and is sensitive to the electron beam. A thin (20 nm) film of GST-225 has been directly imaged in the TEM and the low-dose images processed using Python scripting to extract details of the nanoscale nuclei. Quantitative analysis of the processed images in a video sequence also allows the growth of such nuclei to be followed. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract

    Li-ion batteries function by Li intercalating into and through the layered electrode materials. Intercalation is a solid-state interaction resulting in the formation of new phases. The new observations presented here reveal that at the nanoscale the intercalation mechanism is fundamentally different from the existing models and is actually driven by nonuniform phase distributions rather than the localized Li concentration: the lithiation process is a ‘distribution-dependent’ phenomena. Direct structure imaging of 2H and 1T dual-phase microstructures in lithiated MoS2and WS2along with the localized chemical segregation has been demonstrated in the current study. Li, a perennial challenge for the TEM, is detected and imaged using a low-dose, direct-electron detection camera on an aberration-corrected TEM and confirmed by image simulation. This study shows the presence of fully lithiated nanoscale domains of 2D host matrix in the vicinity of Li-lean regions. This confirms the nanoscale phase formation followed by Oswald ripening, where the less-stable smaller domains dissolves at the expense of the larger and more stable phases.

     
    more » « less